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ABSTRACT

As massive document repositories and knowledge manage-
ment systems continue to expand, in proprietary environ-
ments as well as on the Web, the need for duplicate de-
tection becomes increasingly important. In business enter-
prises such as law firms, effective retrieval applications de-
pend upon such functionality. Today’s Internet-savvy users
are not interested in search results containing numerous sets
of duplicate documents, whether exact duplicates or near
variants.

This report addresses our work in the domain of legal
information retrieval, working with a large, transactional
knowledge management system. We specifically explore the
occurrence and treatment of identical, near-identical, and
fuzzy duplicate sub-documents (‘clauses’) in a contracts data-
base. To our knowledge, we are the first to use principled
methods to construct a test collection of transactional doc-
uments for such research purposes, one which identifies a
variety of duplicate types and is deployed to establish base-
line algorithmic approaches to deduplication.

We subsequently investigate the application of digital sig-
nature techniques to characterize and compare similar clauses
in order to identify duplicates and near duplicates. This ap-
proach establishes a baseline using methods and algorithms
first developed in a parallel domain. It produces a set of
promising results following an extensive assessment phase in-
volving direct comparisons with gold training and test data
created by expert attorneys working in the transactional do-
main.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—
Systems–Textual Databases; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Se-
lection Process; H.3.m [Information Storage and Re-
trieval]: Miscellaneous—Test Collections

General Terms

Experimentation, Measurement, Design, Algorithms
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data management, duplicate detection, document signatures
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1. INTRODUCTION
Both on the World Wide Web and in proprietary data en-

vironments, it is currently possible to have tens of millions
of textual objects indexed as part of the same collection.1

Transactional databases are particularly challenging in that
the contracts they contain consist of a highly hierarchical
structure where the same text object may appear at several
levels across documents. In large knowledge management
environments like law firms, there may be terabytes of in-
formation stored. In such environments, the identification
of duplicate documents is an important factor for a practical
and robust data delivery platform.

One goal of this work is to leverage domain expertise in
order to characterize the duplication existing in such large
textual collections. We subsequently try to validate the com-
pleteness and reliability of this effort with analyses of asses-
sor agreement, error rates, and significance.

This work makes two significant contributions. First, it
creates and deploys a deduping test collection by harnessing:

(a) real user queries;
(b) a significant collection from an operational setting;
(c) professional assessors possessing substantial knowl-

edge of the domain and its clients.

In addition, this work expands the discussion of online (real
time) deduping in Cooper, et al. [10]. Other recent work
has often been syntax rather than lexical-based, Web-based
(focusing on issues such as URL replication and instabil-
ity), and conducted offline (e.g., examining large numbers
of permutations before constructing a feature set). Previ-
ous research is substantially different than our current efforts
which target a dynamic law firm environment. The novelty
of this work thus derives from its being the first to focus on
duplicate document detection for transactional documents
in the legal domain.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in duplicate document detection.
In Section 3, we present the methodology used to assem-
ble our duplicate document detection collection. Section
4 describes a baseline deduping algorithm for non-identical
duplicates and the preliminary trials to assess it. Section
5 delves into performance and evaluation issues associated
with the algorithm. We present our conclusions in Section
6 and discuss Future Work in Section 7.

1In this paper, we will use “collection” to refer to a database of
textual documents, and “deduping” to refer to duplicate docu-
ment detection and subsequent removal or suppression.
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2. PREVIOUS WORK

2.1 Knowledge Management Applications
The problem of duplicate entries in large transactional

document repositories is well known. Solutions to this prob-
lem are not widely publicized. Little if anything has been
written on the subject of transactional deduplication in re-
search proceedings or patent databases. Occasionally one
comes across references to the problem and its treatment in
trade journals or white papers [28]. In one system designed
to facilitate transactional knowledge management and ac-
celeration of a firm’s document creation process, the focus
is on providing transactional resources for a limited number
of practice areas (e.g., real estate, employment, licensing),
while tying the work environment closely to the Office 2003
suite (and the MS Word drafting environment), with little
or no mention of how to address the duplicate document or
clause issue [21].

2.2 Earlier Studies
Some of the first duplicate document detection studies

addressed problems such as plagiarism, intellectual property
violations, and partial replications within file systems [1, 16,
18]. In many of these instances, researchers either owned or
constructed their own data sets for the purposes of testing.

Concerning publicly available collections, in a published
technical report Sanderson [24] described a set of tests he
developed for the identification and potential removal of du-
plicate documents present in the Reuters test collection of
over 22,000 news articles [24].2 He performed a series of
three tests to determine (i) documents that are highly simi-
lar, but reported as separate events; (ii) documents that are
very similar, where one is a longer version of the other; and
(iii) documents that are exact duplicates of each other. Can-
didate documents were found by submitting a document as
a distinct query and examining the results. Documents were
considered exact duplicates if the first retrieved the second
and vice-versa. To avoid retrieving too many similar docu-
ments about related but different events (such as financial
transactions), a condition was established requiring candi-
date pairs to be published within a 48-hour window of each
other.

For test (i), of 33 candidates for similar article, differ-
ent topics, 29 (88%) were not about different events. For
test (ii), of 283 candidates, 139 (49%) turned out not to be
longer versions of the other. And lastly, for test (iii), of 322
candidates, 320 (99%) passed the exact duplicates test. By
presenting these findings, Sanderson helped characterize the
nature and scope of the duplication problem in collections of
news documents. Note that a more comprehensive review
of pre-Web duplicate document detection research can be
found in Conrad, Guo, and Schriber [8].

2.3 Recent Web-based Approaches
Much of the dedicated duplicate document research per-

formed in the last decade has focused on TREC data or ad
hoc corpora constructed from informal collections of Web
pages, e.g., in [7].

2The results Sanderson reported apply to both the original
Reuters collection of 22,173 documents and the newer Reuters
collection of 21,578 documents:
www.daviddlewis.com/resources/testcollections/reuters21578/

Broder, Glassman, Manasse and Zweig [3] author a semi-
nal work on clustering Web-based documents that are syn-
tactically similar in order to address a number of issues in-
volving document resemblance and containment (multiple
hosts, versioning, different formats, dead links, slow access,
subsumption, etc.). They conduct tests on virtually all of
the Web at the time (1996). The authors’ technique has
come to be known as “shingling” and is applied by repre-
senting a document as a series of simple numeric encodings
representing an n-term window—or shingle—that is passed
over a document to produce all possible shingles (e.g., for
n=10). They then use filtering techniques to retain every
m-th shingle (e.g., for m=25), and, if necessary, select a
subset of what remains by choosing the lowest s encoded
shingles (e.g., for s=400). This process produces a docu-
ment “sketch.” To further reduce the computational com-
plexity involved in processing large collections like the Web,
the authors present a “super-shingle” technique that creates
meta-sketches or sketches of sketches. Documents that have
matching super-shingles thus have a sequence of sketches
in common. Pairs of documents that have a high shingle
match coefficient (resemblance) are asserted to be close du-
plicates while pairs that have lower match coefficients are
simply similar. The authors used a resemblance threshold
of 50% in their tests. As subsequent comparative tests have
shown, the more distilled or abstracted the representations,
the greater the chance for error [7, 10].

This work was expanded upon by one of the co-authors,
Manasse, et al., in a subsequent set of Web-based experi-
ments [11]. They identified clusters of near-duplicate doc-
uments and tracked their stability over time. They relied
upon “mega-shingles” to compute clusters of near duplicate
documents, where near-duplicate documents were defined
as documents having at least two super-shingles in common
(i.e., a common mega-shingle). The authors found that two
documents that are 95% similar have an almost 90% chance
of having a mega-shingle in common; yet, two documents
that are 80% similar have only a 2.6% chance of having
a mega-shingle in common. In contrast to Broder, et al.,
Fetterly, et al. determined that their mega-shingling near-
duplicate identification approach (using a union-find data
structure) had a run time that was almost linear in the num-
ber of documents.3

In on-going work by Fetterly, et al., the authors study
the evolution of the Web [13] and come to harness experi-
mental collections of 151 million and 96 million Web pages
and identify the distribution of duplicates therein, i.e., via
short five-token syntactic (non-linguistic) phrases, in order
to reveal Web sites replete with “spam” [12].

Another approach used by Schleimer, Wilkerson and Aiken
is known as “Winnowing” [25]. Like shingling, it can be
adapted to a subset of local document fingerprints created
by hashing; unlike shingling, it is based on strings of char-
acters rather than strings of tokens. As such, winnowing
ignores knowledge of its particular application domain (news
& finance) as well as standard English text (tokens and their
rarity). In some respects, winnowing operates at a logical
extreme of the fingerprint by hashing. It applies an appre-
ciable amount of math to the digital signature problem, but
without harnessing domain expertise, semantic knowledge,

3Broder, et al.’s multi-step process took 10 CPU days to treat
30 million documents, while Fetterly, et al. processed 150 million
documents in a fraction of that time.
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or even term distribution information. It may be effective for
general Web-based information about which we may know
little, but for directed domains for which we do know quite
a bit, it may work at a disadvantage.

Both of the above approaches rely on hash values for each
document sub-section, and both prune these hash values to
reduce the number of comparisons that the algorithms must
perform. The computational complexity and thus resultant
efficiency of the schemes are therefore quite dependent on
the manner and extent to which the pruning is performed.
The more aggressive the pruning, the more efficient are the
algorithms, at the cost of increasing the prospects for iden-
tifying false positive duplicates.

Chaudhuri, Ganti and Motwani recently approached du-
plicate detection from a record merging perspective and fo-
cused on eliminating the problem based on two fundamen-
tal properties of duplicate tuples: compact set and sparse
neighborhood [6].

Shivakumar and Garcia-Molina describe factors in iden-
tifying nearly identical documents on the Web for the ben-
efit of Web crawlers and Web archivers [26]. They conse-
quently concentrate on computing pairwise document over-
lap among pages commonly found on the Web. Their work-
shop draft specifies Web-based applications for the identifi-
cation of near replicas: (1) more efficient web-crawling, fo-
cusing on speed and richer subsets rather than time-consump-
tive comprehensiveness; (2) improved results ranking (or re-
ranking), inspecting the environments from which Web doc-
uments originate; and (3) archiving Web documents, en-
abling greater compression of shorter pages that replicate
more complete document sets. The authors reveal that
there is a much greater incidence of (a) server aliasing; (b)
URL aliasing; and (c) replication of popular documents such
as FAQs and manuals than initially believed. Some of the
resource-saving concepts they propose have been harnessed
by a number of Web search engines, including Google [2].

In one of the most comprehensive works to date, Chowd-
hury, Frieder, Grossman and McCabe [7] refine their col-
lection statistic, idf-based deduping algorithm for efficiency
and effectiveness on both Web-based and non-Web-based
test collections. They also compare its performance to other
state-of-the-art techniques such as shingling and super-shin-
gling. The authors demonstrate that their approach, called
I-Match, scales in terms of number of documents and works
well for documents of diverse sizes. They claim that in addi-
tion to improving accuracy over competing approaches like
shingling, it executes in one-fifth the time. The authors
briefly describe how the collection statistics for the algo-
rithm can come from training collections in rapidly changing
data environments.

In more recent work, Ko lcz, Chowdhury and Alspector of-
fer an alternative to I-Match that relies upon a set of digital
signatures for a document created from randomized subsets
of the global lexicon [17]. The motivation for this approach
is to compensate for the case where the fraction of terms
participating in the I-Match signature (hash) relative to the
terms in the lexicon used is small. The significance of the ap-
proach stems from the fact that I-Match may result in false
positive matches if a large document has a small term inter-
section with the lexicon used. The authors show that this
approach outperforms traditional I-Match with an improve-
ment in overall recall of 40% to 60%. An advantage of the
scheme is its increased insensitivity to word permutations

and its document length independence. The authors do not
quantify, however, the additional cost associated with gen-
erating the multiple lexicons, creating the multiple (K + 1)
signatures, and comparing one (K +1) tuple with another.4

The computational cost of this improved performance ap-
pears to be implementation dependent. For non-critical ap-
plications such as that mentioned by the authors—reducing
spam by a significant percentage in a large ISP provider e-
mail system—the benefits of the technique may outweigh its
costs and justify its deployment.

The Web-related research of Park, Pennock, Giles and
Krovetz relies heavily on the notion of lexical signatures,
consisting of roughly five key identifying words in document,
based either on their low df or high tf properties [23]. What
distinguishes this work is that its eight signature variations
are designed and evaluated for their ability either to retrieve
the associated document in question in the top ranks of a
search result (unique identification) or to retrieve alternative
relevant documents should the document be lost (e.g., due
to a broken link) (relevance properties). They determine
that hybrid signatures consisting of only a couple of low df
terms plus several high tf or high tf · idf terms produce the
most effective unique and relevant properties for Web page
signatures.

Cooper, Coden and Brown discuss methods for finding
identical as well as similar documents returned from Web-
based and internal IBM enterprise searches [10]. The tech-
niques are based upon the creation of a digital signature
composed of the sum of the hash codes of the “salient”
terms found in a document. The document signatures are
intended to provide a short-hand means of representing the
top terms in documents to facilitate fast comparisons. Their
tests generally rely upon a single query and may warrant
more comprehensive evaluation. The authors describe their
approach as the “logical extreme of super-shingl[ing],” yet
characterizing a document by summing its Java hash codes
for hundreds or more terms may raise questions about the
principled, dependable nature of the technique.5

The significance of this overview is that there has not
yet been established a standard information retrieval (IR)
test collection for duplicate document detection. As we ap-
proached the problem, this was our first essential step, since
without a validated test collection, we could not have con-
fidence in the approaches and performance measures that
followed.

3. METHODOLOGY

3.1 Background
Initially the Thomson business unit responsible for law

firm knowledge management (West km) asked us for tech-
nologies to identify and treat duplicate documents in trans-
actional databases. In response, we began characterizing the
distribution of duplicate types across a representative con-
tracts collection that we constructed from documents ob-
tained through an acquisition. The collection statistics for
the resulting contracts database are shown in Table 1.

4(K + 1): 1 represents the original and complete I-Match signa-
ture and K represents the number of permutations of the original
lexicon. Ko lcz, et al. experimented with K ranging from 1 to 10.
5The test to determine whether a technique is principled, in this
case, depends upon whether it avoids leaving anything to chance
or probabilistic uncertainty. In short, is the approach highly reli-
able?
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Duplicate Type Definition
Identical Clauses which contain no variation in the substantive words used, but which may have variations in non-

substantive words, such as articles (e.g., we would view clauses which used the same words except that one
used “Company” and another “the Company” as identical).

Near Identical Identical but for defined terms or keywords (e.g., company name, address, dollar amount, jurisdiction, etc.).
Clauses which are the same but for the use of synonyms (e.g., Executor vs. Personal Representative) would
fall into this category.

Fuzzy Essentially the same language and legal meaning. Clause lengths must not vary by more than ± 20% of each
other and clauses must contain at least an 80% terminology match.

Table 2: Definitions for Duplicate Types

Duplicate Type Sample Pairs
Near Identical Section 14.06 Successors and Assignors.

All covenants and agreements in this Agreement by the Sponsor shall bind its successors and assigns,
whether so expressed or not.
Section 11.09. Successors and Assignors.
All covenants and agreements in this Indenture by the Issuer shall bind its successors and assigns,
whether so expressed or not.

Fuzzy 3.1 Successors and Assigns.
This agreement enures to the benefit of and is binding on the parties hereto and their respective
successors and assigns.
32. Successors and Assigns.
This agreement shall be binding upon, and enure to the benefit of, the parties, their legal representatives,
successors and assigns.

Table 3: Illustrations of Non-Identical Duplicate Types

Component Size
(‘Doc’ Type) (Total No.)
Files 2,410
Documents 4,694
Clauses 82,485
Defined Terms 75,834

Table 1: Transactional Test Collection Statistics

We then initially proceeded to address two of the three
largest and most significant categories of duplicates asso-
ciated with this type of database. These duplicate-types
include: (1) identical duplicates, (2) near identical dupli-
cates, and (3) ‘fuzzy’ duplicates. The definitions of these
duplicate-types, referring to clause-level granularity, are pre-
sented in Table 2, while illustrations of the two non-identical
duplicate categories are presented in Table 3. These were
some of the tools we provided to our attorney assessors when
asking them to evaluate sample result sets.

Much effort has addressed issues surrounding relevance as-
sessments in various contexts of Information Retrieval over
the years [4, 14, 29]. At a certain level of abstraction, the
task we eventually asked our assessors to perform is similar
in function to that of a standard relevance judgment. Given
an initial target document (that may be viewed conceptu-
ally as a query), our assessors are asked to identify other
documents in the same result set that satisfy the similarity
metrics (i.e., are “highly relevant” to it).

3.2 Problem Definition and Client Feedback
In an earlier and related project, we conducted a feedback

session with 25 members of our Library Advisory Board,
who represented a variety of our clients’ enterprises and
firms [9]. Most of the group’s formal training comes from
the field of Library Science. In all, 17 of the 25 participants
provided non-trivial replies to our suite of questions. The
role of the members of this Board is typically to field infor-
mation needs from their enterprise’s legal practitioners and

engage in a variety of related research projects. As such,
they are uniquely positioned to provide domain expertise in
their focus areas and an excellent group to consult.

The objective of the session we conducted was to describe,
both qualitatively and quantitatively, the nature of the most
annoying duplicate documents or textual segments such as
clauses and to receive feedback from participants on these
types. This exercise resulted in the following description: a
non-identical duplicate pair consists of two documents that
possess a terminology overlap of at least 80% and where one
document does not vary in length from that of the other by
more than ± 20%. It was generally believed that to call
documents with less than an 80% terminology overlap du-
plicates would be problematic. Although such documents
might adequately satisfy Broder’s definition of containment,
they could not reasonably satisfy a definition for resemblance
[3], which is our principal objective.

In subsequent discussions with transactional domain ex-
perts within West km who were very familiar with the needs
and expectation of their customers, the required degree of
overlap was raised to 90%. A priority was also placed upon
clause-level rather than document-level deduplication. Note,
however, that a 90% overlap condition does not imply that
90% of the shared text must be identical. In some examples,
even though at the paragraph, sentence, phrase, and word
levels, documents may differ substantially (not to mention
at the title level), they may still satisfy the similarity con-
ditions of this definition and would thus be judged as valid
non-identical duplicates.

These guidelines produced a working definition of “near
duplicate” pairs with which we proceeded. Note that im-
plicit in this definition is the fact that these relations are
not transitive. That is to say, if texts A & B are duplicates
and B is 80% the length of text A, and texts B & C are
duplicates and C is 80% the length of text B, it does not
follow that C is also a duplicate of A. In this instance, that
is clearly not the case.
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3.3 Collection Generation and Domain Expert
Assessments

To test our approach, we selected a total of 50 real user
information requests from a query log that also included
a human-assigned transactional query category. These logs
originated from a production environment that was incor-
porated into West km. The queries were randomly selected
with the exception that a results list of at least 20 documents
was required. A sample of these categories is shown in Ta-
ble 4 while a sample of the queries is shown in Table 5. The
average query contained roughly three terms. Each query
was run using the West km Transactional system which pro-
vides natural language search capability, depending on the
preference of the user. After running these queries against
our test collection, which consisted of approximately 82,500
clauses, we assembled the top twenty clauses returned from
each query. While the cumulative result set consisted of
nearly 1,000 clauses, each set of twenty clauses was reviewed
by two attorney-editors,6 in order to identify their duplicate
subsets.7 This process helped us produce standard train-
ing and test sets against which computational approaches
would be compared.8 Collection statistics for the resultant
training and test sets are shown in Table 6.

No. Category of Contract (Selected)
A. Standard Provisions (All Contracts)
B. Acquisition Agreements
C. Employment Agreements
D. Escrow Agreements
E. Investor Rights Agreements
F. Joint Ventures
G. License Agreements
H. Limited Partnership Agreements
I. Loan Agreements
J. Merger Agreements
K. Real Estate (REIT/Partnerships)
L. Reorganization Agreements
M. Security Agreements
N. Underwriting Agreements

Table 4: Transactional Law–Sub-Categories

Query Type Transactional Law Queries
Acquisitions “excluded liabilities”
Employment “put option”
Joint Venture “event of default”
Limited Partnership “initial capital contribution”
Loan Agreement “fixed charge coverage ratio”
Security Agreement “sale of collateral”

Table 5: Sample Qrys–Duplicate Set Construction

3.3.1 Details of the Document Inspections
In this trial, we applied definitions of non-identical du-

plicates that were drafted by customer and business unit
work groups. The resulting definition states that two texts
are duplicates if they retain much of the same language and

6Our attorney-editors, who are required to have law degrees,
spend a significant portion of their day working closely with es-
sential analytical legal texts.
7Inter-assessor agreement is discussed in Section 3.4.
8“Training” is not used here in the Machine Learning sense in-
volving automatic learning; rather, it signifies an initial round
in which we were permitted to establish the algorithm’s optimal
parameter settings.

are at least 90% similar.9 To formally review the duplica-
tion status of our result sets, we assembled twelve attorney-
editors. The 50 sample queries were divided into two sets of
25, the first set to be used to train a prototype system and
the second set to test it. The process by which the query
results were judged was scheduled over four weeks time (as
indicated in Table 7). During week 1, results from the train-
ing queries were assessed for their duplication status. Each
team reviewed the results from 25 queries, approximately 5
queries per team per day. Although members of the same
team reviewed the same results, they did so independently.

Assessor Pair Team A Team B
Week 1 25 Qrys 25 Qrys
Week 2 Arbitration Arbitration
Total 25 Qrys 25 Qrys
Combined 50 Qrys

Table 7: Scheduling of Assessments

The assessors also had access to the term counts avail-
able in the core documents (which excluded only a limited
amount of metadata, such as name of source file, as shown
in Table 8). Week 2 served as an arbitration week. When
members of the same team disagreed about a duplicate set,
a senior attorney-editor not on that team would serve as
an arbitrator or tie-breaker. In this way, a virtual voting
system was established. Every result set would thus be re-
viewed by a minimum of two assessors, and sometimes by
three. This approach was intended to produce dependable
judgments from the process.

Type Sample Instantiations

ClauseTitle Section 7.9 WAIVER OF JURY TRIAL
DocTitle Pledged Bonds Custody & Security Agreement
DMSFile PledgeCustody.1March00.doc

ClauseTitle (m) LEVERAGE RATIO
DocTitle Letter of Credit & Reimbursement Agreement
DMSFile NNZX18!.doc

ClauseTitle 6. Compensation of Escrow Agent
DocTitle EXHIBIT C ESCROW AGREEMENT
DMSFile 0587980.doc

Table 8: Metadata Classifications for Clauses

To further help ensure judgment reliability and consis-
tency, a training document was prepared for the assessors
that included illustrations and detailed instructions. In ad-
dition, a preliminary training exercise was developed for
each team that included real user query result sets and the
opportunity for the particpants to discuss their judgments
as well as the granularity of their inspection. All of the as-
sessors participated in the same initial training session and
were asked to apply their knowledge to the same pair of sam-
ple result sets. Training guidelines were amended as a result
of these sessions in order to clarify the level of granularity
of analysis necessary for the task. In general, the assessors
found these training cases quite instructive. As beneficial

9(a) I.e., 90% of the words in one text are contained in the other
(in terms of overall terminology rather than individual term fre-
quency).
(b) For texts that do not meet a working threshold for similarity

or resemblance, Broder, et al. monitor a second looser relation-
ship described as containment [3].
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Query Query Total Clauses / Mean Length Standard Median Length
Set Count Clauses Query (in tokens) Deviation (in tokens)
Training 25 478 19.1 532.9 1120 154.0
Test 25 464 18.6 233.5 247 143.5
Combined 50 942 18.8 385.3 829 152.0

Table 6: Collection Statistics for Query-generated Clause-level Training and Test Sets

as this training round was, the assessors did not produce
completely uniform judgments. Information and statistics
about inter-assessor agreement can be found in Section 3.4.

Table 9 presents the number of queries that yielded dupli-
cate sets in the trial. Some queries produced no duplicate
sets—two in the training set and none in the test set. These
were retained for two main reasons. First, they were pro-
duced by our random sampling and are therefore presumably
representative and, second, they can still be instructive in
terms of false positive sensitivity experiments, since these
queries should produce no duplicate sets.

By contrast, Table 10 shows the distribution of duplicate
sets by size. The queries for the test set produced slightly
fewer duplicate sets; but both sets also produced several
larger duplicate sets consisting of 4, 5, 6, or more clauses.
The assessors identified an average of 3.8 duplicate sets per
query-result set (4.2 in the training set and 3.4 in the test
set).

Duplicate Document Training Test
Detection Set Set
Total Queries 25 25
with Duplicate Sets 23 25
without Duplicate Sets 2 0

Table 9: Distribution of Duplicates Across Queries

Duplicate Training Set Test Set
Set Size (Frequency) (Frequency)
Pairs 69 63
Triplets 19 14
Quadruplets 13 5
Quintuplets 1 2
Sextuplets 1 1
More than 6 1 1
Total 104 86

Table 10: Distribution of Total Resulting Duplicate
Sets

3.4 Inter-assessor Agreement
When asked to verbally characterize the nature of the du-

plicate sets identified in relation to exact duplicates, the as-
sessors were in agreement that the sets they found spanned
the identical–non-identical duplicates spectrum.10

Of the 50 queries reviewed by a pair of assessors, 23 re-
sulted in complete agreement between the assessors. Fur-
thermore, Team A agreed on over 3 in 4 of its duplicate sets,
while Team B agreed on over 4 in 5 of its sets. Disagree-
ments between asessors were resolved by means of a voting
process, whereby a senior attorney-editor not on the team

10In another work, we categorize and quantify into six classes the
distribution of duplicates found in our test collection [8].

served as an arbitrator and cast a third and tie-breaking
judgment.

We used the Kappa statistic for nominally scaled data in
order to compare our inter-assessor concordances over the
50 result sets [27]. The Kappa coefficient of agreement is
the ratio of the proportion of times that the assessors agree
(corrected for chance agreement) to the maximum propor-
tion of times that the assessors could agree (corrected for
chance agreement):

κ =
P (A) − P (E)

1 − P (E)

where P(A) is the proportion of times that the k assessors
agree and P(E) is the proportion of times that we would
expect the k assessors to agree by chance. If there is com-
plete agreement among the assessors, then κ = 1; whereas if
there is no agreement (other than the agreement that would
be expected by chance) among the assessors, then κ = 0.
We used as our baseline set of candidate duplicates the set
of all textual (clausal) pairs identified by at least one of our
assessors. The results are presented in Table 11.11

Computational linguists have taken κ = 0.8 as the norm
for significantly good agreement, although some argue that
there is insufficient evidence to choose 0.8 over, for instance,
other values between 0.6 and 0.9 [19].

Given a result set of n = 20 clauses, there are n(n− 1)/2
or 190 total comparisons required. We had two assessors
make categorical judgments with respect to each of these
candidate pairs: exact duplicate, fuzzy duplicate, or non-
duplicate. We computed the Kappa statistic over the com-
parison space described using a more tractable binary com-
parison (duplicate versus non-duplicate).

Because the majority of clausal pairs are not duplicates,
the possibility for chance agreement is high. But this mar-
shals the strength of the Kappa statistic—it corrects ob-
served agreement with respect to chance agreement. Given
the size of the space (190 pair-wise comparisons), the result-
ing Kappa values we obtain are likely to be slightly inflated
(given that the vast majority of the 190 comparisons are
non-duplicates), but not significantly [20].

After determining the value of the Kappa statistic, κ, it
is customary to determine whether the observed value is
greater than the value which would be expected by chance.
This can be done by calculating the value of the statistic z,
where,

z =
κp

var(κ)

in order to test the hypothesis Ho : κ = 0 against the hy-
pothesis H1 : κ > 0 [5, 27].

11For the macro-averaged scores, the Kappa statistic is calculated
using a single table for all the comparisons involved in the entire
query set. The micro-averaged scores would be calculated using a
separate table for the comparisons from each query; these scores
in turn would be averaged together to derive the composite Kappa
score.
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Assessor Pair Editor–Editor System–
Editor-Arb.

Training κ = 0.87∗ κ = 0.95
(First 25 Queries)

Test κ = 0.92+ κ = 0.94
(Second 25 Queries)

Combined (50 Qrys) κ = 0.898 κ = 0.943
(Train & Test)

Table 11: Kappa Statistics for Inter-assessor Agree-
ments for Duplicate Set Identification (macro-
averaged scores)

The above value of κ for the combined query set yields
z = 3.925 (Team A, Queries 1-25)∗ and z = 5.191 (Team B,
Queries 26-50).+ These values exceed the α = 0.001 signifi-
cance level (where z = 3.090). Therefore, we may conclude
that the assessors exhibit significant agreement on this cat-
egorization task. It is important to note that these results
were produced before we introduced the arbitration round,
wherein another attorney-edtor not on the team resolved
differences in judgments between the two original assessors.
Given a third expert casting a “vote” on these differences,
the final duplication judgments are arguably more reliable
than those examined during the Kappa analysis.

4. OVERVIEW OF INITIAL ALGORITHM
Sections 4 and 5 are included to examine the utility of the

resulting transactional duplicate detection collection when
designing, developing, and testing algorithmic approaches
to deduplication of fuzzy duplicates.

Note that there have been efforts to completely automat-
ically detect “redundancy” in result sets [31], but these ap-
pear to eliminate the role of the client and focus exclusively
on mathematical models of content, even in highly dynamic
retrieval environments. In order to determine our ability to
identify and characterize such non-identical duplicate docu-
ments using the contributions from our client base, we began
investigating reliance upon an expanded multi-dimensional
feature set or “digital signature.” This feature set includes:

• magnitude component (doc length);
• hash of the top N rarest terms and their locations (hash key);
• core content component (term vector).

The role of the first two is to provide heuristics to reduce
the need for more costly term comparisons. They do not
reduce the number of candidate pairs as much as reduce the
search space for valid duplicate candidates. In addition to
document length (excluding metadata) and top-term hash,
a document’s term vector is represented by its top n idf
words, where n falls somewhere between 30 and 60 words.
We determined empirically that 60 words would serve as
an optimal default vector size for documents of moderate
length, because (a) it offers substantially finer granularity
to the process, and (b) it does not exceed the short length
limits of the vast majority of such documents. For clause-
level deduplication, however, where the texts can and are
often considerably shorter, the lower bound of 30 terms was
found to be more practical, but also invites an algorithmic
means of smoothly accommodating still shorter length texts.

The percent overlap between two documents’ term vectors
served as our de facto similarity measure. In practice, once
the heuristics completed their reduction of eligible candidate
pairs, the algorithm then used as its matching criterion a

90% vector overlap.
Aside from core content from contract clauses, metadata

indicating law firm, key indexing terms, source file, etc.
(some shown in Table 8) is not used. We have determined
that such supplemental content tends to increase the num-
ber of false positives, since related but dissimilar documents
may possess similar metadata and classification terms.

It is worth noting that even though these metadata clas-
sification indexes are not considered part of the core docu-
ment, they were not suppressed from our assessors (though
the assessors were generally discouraged from using them
in their determination of duplication status, because of the
false positive risk discussed above). Nonetheless, in the
comprehensive collection that resulted, these fields are still
viewed as intrinsic to the corpus and are therefore retained.

5. COLLECTION DEPLOYMENT AND
PERFORMANCE EVALUATION

5.1 Test Corpus and Algorithm Assessment
Figures 1 (a) and (b) and Table 12 show the performance

of the algorithm outlined above relative to the gold data
standard established by the attorney assessors, in terms of
agreement (correct identification), false negatives (misses),
and false positives (over-generation). An idf table constructed
from a separate training collection of over 2 million docu-
ments is used to identify the rarest terms. A number of
modifications were made to the algorithm during the train-
ing phase. Most notable is how it treats short texts (with
fewer than 30 terms). A variety of options exist, including
(i) comparing vectors of unequal length, (ii) comparing only
the rarest n terms, where n is the size of the shortest text’s
vector, and (iii) padding the short text’s term vector with
entries not found in the table (in a manner that facilitates
comparisons with similar docs). In the end, we found that
amendments to the last approach yielded the best results.

Training Data

Assessors Algorithm

False − False +

9 94 15

Figure 1 (a). Dup Sets Identified in Training Round

Test Data

Assessors Algorithm

False − False +

5 81 7

Figure 1 (b). Dup Sets Identified in Test Round
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Duplicate Training Set Test Set
Type Capture Miss Total Percentage Capture Miss Total Percentage
Identical 65 2 67 97.0% 60 0 60 100.0%
Near Identical 12 1 13 92.3% 15 1 16 93.8%
Fuzzy 17 6 23 73.9% 6 4 10 60.0%
Total 94 11 103 91.3% 81 7 86 94.0%

Table 12: Distribution of Results for Clause-level Duplicate Set Identification

We nonetheless discovered that (atypical) texts of less than
10 terms yield a higher rate of false positives and thus are
not reliable candidates for signature generation.

The algorithm recognized 91% of the duplicate sets iden-
tified by the assessors in the training round (94/103) with 15
false positives and 94% of the duplicate sets in the test round
(81/86) with 7 false positives.12 Upon performing a failure
analysis of our false positives, we were able to make three key
observations. First, by tightening parameters such as length
of term vector, from 60 to 30 terms, several of the training
round’s false positives can be eliminated with no impact on
the other results. Secondly, several of the false positives are
sets resulting from algebraic clauses with equations or rates
of exchange and are either practically all numerical or repre-
sent a boiler plate text of nearly identical content with only
two numbers changing from one document’s clause to the
next. The significance of this observation is that for those
largely quantitative clauses for which the algorithm was not
designed, performance is spotty and some user education
may be helpful. Thirdly, of the remaining false positives,
the documents are often so close that the extent of their
“erroneous” nature is debatable among the assessors (e.g.,
with slight adjectival differences distinguishing one clause
from another).

If we define precision as the percentage of duplicate doc-
uments identified by the algorithm that agree with the as-
sessors and recall as the percentage of the total number of
duplicate documents identified by the assessors also identi-
fied by the algorithm, then our results can be found in Table
13.

DDD Algorithm Training Test
Performance Set Set

Precision 94 of 109 81 of 88
(%) 86.2% 92.0%

Recall 94 of 103 81 of 86
(%) 91.2% 94.2%

Table 13: DDD Algorithm-Assessor Correspon-
dence

Given this preliminary effort to investigate effective dedu-
plication for contract clauses, the initial performance of the
algorithm, in terms of both precision and recall, is encour-
aging. Although the majority of its recall misses currently
occur under the targeted “fuzzy” category (Table 12), it
nonetheless provides a useful baseline upon which additional
enhancements can build.

5.2 Comparative Evaluation
An analysis like the one presented above invites a discus-

sion of comparative evaluation. The most meaningful com-
12In an IR context, the percentages presented correspond to recall.
By contrast, 94/109 (86.2%) and 81/88 (92.0%) correspond to
precision (cf: Table 13).

parison to examine is that of idf-based deduping techniques
(addressed in the previous section) and well-known alter-
natives such as shingling [3], in terms of both timing and
effectiveness. It is significant to mention that when we in-
corporate features such as doc length and hash key into the
digital signature, they are selected to minimize the impact
on overall performance. That is, we select a range (of length)
and a hash (of rarest terms) such that no duplicates would
be lost by their introduction; they serve strictly to reduce
the computational cost of comparisons. For this reason, the
comprehensive trials conducted by Chowdhury, et al. [7].
provide relevant comparative insights. They examined how
idf-based signature approaches to deduping perform relative
to selective windowing techniques such as shingling. They
determined that given identical data, an optimized idf fin-
gerprint approach is nine times faster than shingling (six
times faster than super shingling) when run against the 2
GB NIST Web collection (on a Sun ES-450) [15].

In terms of actual deduplication effectiveness, because
shingling does not cover every portion of a textual docu-
ment and is not sensitive to the rareness of participating
terms, it consistently under identified duplicates in a di-
verse duplicate set constructed from TREC’s Los Angeles
Times sub-collection (which consists of 10 duplicate sets of
11 documents each) [30]. This result occurred as shingling
produced more than the optimal number of duplicate sets
when processing the automatically generated test collection.
Although both approaches use principled techniques, a key
distinction between them is that shingling relies upon undis-
criminated strings of tokens (shingles) as its representatve
content (discussed in Section 2.3). By contrast, the idf-
based algorithms distinguish between richer, rarer content-
bearing terms and those which are not. This characteristic
appears to be one of the chief shortcomings of shingling and
a strength of idf-based approaches like ours.

It is worth noting, however, that shingling was devised for
very large heterogeneous content sets like those found on the
Web, whereas algorithms like that reported on here, along
with their associated heuristics for computational efficiency,
were designed with a dedicated and more circumscribed do-
main in mind, while also placing a premium on precision.
Measures to extend and improve our algorithm, in terms of
leveraging the named entities found in transactional docu-
ments, are addressed in Section 7.

5.3 Accuracy and Confidence Levels
It is important to note that our evaluation of the algo-

rithm’s results on our test set provides only an approxima-
tion of its true accuracy. After all, we applied our algorithm
to a combined sample set of nearly 1,000 clauses out of a
collection of over 80,000. A reasonable question is thus–how
good of an approximation is this? Stated differently, what is
our confidence level that the performance measures on this
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set reflect true accuracy on the complete set? Mitchell has
addressed this problem in the context of Machine Learning
[22]. For a collection C, errorC can be defined as the ra-
tio of false positives and false negatives in the algorithm’s
results on C. Our evaluation test set of sample S produces
errorS . Mitchell assumes that the probability of having a
specific ratio of errors (r) is approximated by a normally dis-
tributed random variable with a mean errorS and standard
deviation:

σerrorS =
σr

|S| ≈

s
errorS(1 − errorS)

|S|

where |S| is the size of the sample. The true error can
be viewed as drawing a bell curve that is centered on the
observed error. So with probability N%, errorC is within
zN standard deviations of errorS , where zN is the z-value.
In our case, there is a 95% chance of errorC is within 1.96
standard deviations of errorS . For instance, for an observed
error ratio of 2.3% (22 errors among 942 document-clauses),
there is a 95% chance that the error on the full collection is
within the range 2.34% ± 0.49%. For 44 errors among 1,884
document-clauses, the interval would be 2.34% ± 0.35%.
This analysis likely warrants further investigation since as
one moves beyond consideration of a result set consisting of
20 documents, the number of pair-wise comparisons required
per query increases exponentially. It would be instructive to
determine whether this fanout has any appreciable impact
on error rate. In subsequent tests on result sets consisting
of approximately 1,000 documents coming from the business
domain, we found no deviation in performance.

6. CONCLUSIONS
The accelerated growth of massive electronic data envi-

ronments, both Web-based and proprietary, has expanded
the need for various forms of duplicate document detection.
Depending on the nature of the domain and its custom-
ary search paradigms, this detection can take any of sev-
eral forms, but may be largely characterized by either iden-
tical or non-identical deduplication. Our own exploration
addresses a real world replication problem occurring in the
transactional law domain. We designed a methodology that
invited our clients, both internal and external, to define the
scope of the problem, and then commissioned pairs of profes-
sional legal assessors to use our working definition together
with additional principled methods to construct a test col-
lection in which non-identical duplicates are identified. We
have also attempted to validate the decisions of our asses-
sors using a follow-up Kappa analysis. For non-identical
duplicate text detection, our applied test collection proved
beneficial and the subsequent dedicated trials suggest that
a multi-dimensional feature set approach to characterizing
and comparing clause-level texts can provide a solid indi-
cation of the degree of duplication between two texts. The
treatment of its multi-dimensional feature set frees it from
reliance upon singular features and permits heuristics to save
on more costly comparisons.

7. FUTURE WORK
In subsequent work, we plan to add a layer of Entity

Recognition (ER) in order to address the “near identical”
duplicates category. Such ER research would include the
categorization of entity (e.g., party, organization, location,

financial amount, etc.) as well as whether two entities would
warrant resolution to a single canonical form. Once such a
follow-up process were added, we would be better able to
improve the granularity of our existing evaluation measures.

8. ACKNOWLEDGMENTS
We appreciate the duplicate assessment efforts of Rod-

ney Brown, Scott Ratcliffe, Cara Cardinale, Frank Wozniak,
Yasmin Alexander, Joanne Rhoton, Lora Thody, Bill Bre-
mer, Elizabeth Randisi, Stephanie Harth, Kevin Duerinck
and Lisa Kless. We thank Ely Razin and Kingsley Mar-
tin for their invaluable contribution of domain expertise.
We are also grateful to George May, Anudeep Parhar and
Matt Canavan who supported our non-identical duplicate
research. And lastly, we acknowledge the assistance of Bart
Matzek and Doug Heger in handling computability and real-
time processing issues in the production environment.

9. REFERENCES
[1] Sergey Brin, James Davis, and Héctor Garćıa-Molina.
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