
Linking, mapping, and clustering entity records in information-based solutions 
for business and professional customers  

 
Jack G. Conrad, Tonya Custis, Christopher Dozier, Terry Heinze,  

Marc Light, Sriharsha Veeramachaneni 
Thomson Corporation 

610 Opperman Drive, Saint Paul, MN 55123 USA 
E-mail: marc.light@thomson.com  

Abstract  
This is a position paper that describes a number of use cases and their corresponding evaluation metrics.  We discuss three types of 
resolution problems: linking entity mentions in text to records in a database, mapping records in one database to those in another database, 
and clustering records in a single database. The use cases arose at the Thomson Corporation and the systems developed support a number 
of products.  
 

1. Introduction 
 
The aim of this paper is to provide the reader with an 
overview of the entity resolution tasks we have worked on, 
the methods we have employed, and the evaluations we 
have used.  
 
To provide context for our discussion, it is useful to have 
some idea of what our company does: the Thomson 
Corporation provides information-based solutions for 
lawyers, business people, nurses, doctors, scientists, and 
other professionals.  Many of these solutions involve 
textual sources in combination with more structured 
sources such as databases of numeric and nominal 
information.  Both the text and the databases contain 
information about entities ranging in type from genes to 
cities.  Part of the “intelligent information” that Thomson 
products use is the mapping, and clustering of entity 
records along with linking of these records to text 
mentions.   
 
Historically this mapping, clustering, and linking has been 
done manually.  However, increasingly, automated systems 
are being used.  In some cases, automated systems assist 
humans, improving their accuracy and efficiency.  In other 
cases, the accuracy of the automated systems is sufficient 
alone.   Our department, Thomson Research and 
Development, has been involved in such work and has 
developed a number of automated systems including 
systems that support products such as Westlaw Profiler 
(http://west.thomson.com/westlaw/profiler/),  Westlaw 
Medical Litigator 
(http://west.thomson.com/westlaw/litigator/medical.aspx),  
and West’s Monitor Suite  (http://www.firm360.com/). 
In addition to working in the legal domain, in recent years, 
we have worked on systems for Thomson Financial, 
Thomson Scientific, and Thomson Healthcare.     
 
The remainder of the paper is structured as follows. First, 
we discuss tasks of linking entity mentions in text to 
records in a database.  Next we discuss mapping records in 
one database to those in another database; such a task arises 
when two databases need to be merged.  Finally we discuss 
clustering records in a single database; such a task arises 

when a database contains numerous records for the same 
entity but there is no explicit information denoting the 
relation.   For each of these three general tasks, we describe 
our general approach and evaluation methods and then 
describe one or more case studies.  

2. Linking entity mentions in text to records 
in a structured database 

We have created a number of applications that are based on 
extracting named entities from text and attaching them to 
structured records in an entity database.  The basic method 
consists of the following two steps.  First we extract from 
the text the entity names of interest along with information 
that can be used as evidence for entity resolution. Then we 
place the extracted text segments into a structured record 
called a template record and attempt to resolve (link or 
match) the template record to a record in an entity database.   
The first step in this process is called the extraction phase. 
The second step is called the entity resolution phase.  We 
will only discuss the resolution phase here. 
 
The entity resolution phase is based on record linkage 
techniques.  The entity resolution phase can be separated 
into two phases: blocking and matching.  In the blocking 
phase, we use some element of the extracted person name 
to read a subset of the records from the database likely to 
contain any existing database record matching the 
extracted person name.  A typical blocking key might 
consist of all or part of a person’s last name.  Blocking is 
necessary because it is usually not computationally feasible 
to perform the full matching function on every database 
record for each extracted name. Blocking and its role in 
record linkage is further discussed in (Winkler, 1995) and 
(Baxter, et al., 2003).  The second phase is matching and 
consists of comparing each database record in the block to 
the current template record and computing the likelihood 
that the template record and a given database record refer 
to the same person (i.e. match).   The complexity of the 
resolution step is determined by the size and similarity of 
the entities in the database, the quality of the extracted data 
in the template record, the comprehensiveness of the 
database, and any contextual knowledge about the text that 

http://west.thomson.com/westlaw/profiler/
http://west.thomson.com/westlaw/litigator/medical.aspx
http://www.firm360.com/


indicates whether the person names from the text are likely 
to belong the same set of people covered by the database. 
 
For person names, the features we often use in our 
matching functions include the degree of match between 
the first, middle, and last name of the person and also 
include location information, appositive information 
indicating person’s profession, and organization names 
with which the person is affiliated. We usually combine 
features to compute a match belief score using either naïve 
Bayes and support vector machine classifiers   In some 
cases, we have used heuristic rules to combine the features 
to arrive at a decision.  At this point, we do not have a 
principled process for deciding which type of classifier to 
use on a new problem.  
 
We typically collect positive training data by asking editors 
to provide between 500 and 1000 manually matched 
examples chosen at random.  We then collect very large 
amounts of negative training data automatically by pairing 
the template record from the positive data with all of the 
database records except the one identified as matching in 
the positive set.  
 
After we learn our match function from the training data 
and compute match scores between every database record 
in the block and a given template record, the highest 
scoring database record is linked to the template record 
provided the match score exceeds a match threshold 
determined by the training data.   If the highest scoring 
record falls below the match threshold, we check the score 
against a low threshold to determine if the template record 
is far enough away from all database records to warrant the 
creation of a new database record.  If the match score falls 
below the low threshold, it is likely the template record 
refers to a new person and we therefore add it to the 
database. If the highest score falls between the match and 
low thresholds, we log the template record for manual 
review. 
 
We usually measure the quality of our text to database 
linking systems using precision and recall as measured 
against a held out test set.  We like to have a least 300 test 
records available, which often gives us a small enough 
confidence interval around the resulting precision and 
recall numbers.  Our baselines start with a system that 
chooses at random from the returned block size.  Thus, if 
the average block size is 2, then the first baseline would 
have an accuracy of 50% (precision 50%, recall 50%, and 
F-measure of 50%).  Then, we provide progressively more 
intelligent baselines by using heuristics based on frequent 
high precision features, e.g., pick the record that has a 
location field closest in edit distance to the template field. 
 
In the subsections that follow, we describe two specific 
applications that are based on the text-to-database record 
linkage methodology described above. 
 
 
 

 
 
 

 
 

Extraction 
of template 

Text 
Document 

Template 
record  

 
 
 
 
 

Figure 1: System diagram for linking entities in text to 
database records 

2.1 Case study: linking legal professionals from 
caselaw documents to legal directories 
In this task we extracted attorney, judge, and expert witness 
names from American caselaw, briefs, and professional 
journals.  Then we attached these names to unique person 
records in a comprehensive database of U.S. legal 
professionals (Dozier & Haschart, 2000).  By establishing 
these links, we are able to offer users the ability to browse 
through documents in which an individual is mentioned 
and to offer users the ability to jump to an individual’s 
curriculum vitae from a name mentioned in text.  New 
records are continually added to the person database when 
mined names do not match any individuals currently 
residing in the database.   
 
A typical paragraph in caselaw that identifies the attorneys 
involved in a case is shown below. 
 

H. Patrick Weir, Jr., Lee Hagen Law Office, ltd., 
Fargo, N.D.,  Jeffrey J. Lowe, Gray & Ritter, P.C., 
St. Louis, MO, and Joseph P.  Danis and John J. 
Carey, Carey & Danis, LLC, St. Louis, MO, for  
plaintiff and appellant.        

Figure 2: Attorney paragraph 
 
In the example paragraph, our system extracts and links H. 
Patrick Weir, Jr.,  Jeffrey J. Lowe, Joseph P. Danis, and 
John J. Carey to attorney records in our legal directory. 
 
We use regular expression patterns to extract names and 
name matching evidence which includes law firm, city, and 
state information.  Our name matching evidence consists of 
features that compare each of the following fields: first 
name, middle name, last name, firm name, and city/state.  
The values of the features are: matches exactly, matches in 
a fuzzy way, is unknown, or mismatches.  An example of 
fuzzy matching would be if one name is a nickname of the 
other or if one name is an initial only and matches the first 
letter of the other name.  
   
We use several thousand positive training examples to train 
a naïve Bayes match classifier. The size of our database 
was approximately 1 million records.  We blocked on last 
name first, and, if we failed to find a match with this block, 
we blocked on first name.  This multiple blocking method 
allowed us to capture cases where an attorney has changed 

Database 
record 

Record 
linkage 



her last name through marriage for example. 
 
We compared our method to three other matching 
techniques for an attorney name.  We measured the 
precision and recall we would get (1) if we link attorney 
names only when the first, middle, last name, and city-state 
match exactly, (2) if we link attorney names only when the 
first, middle, and last name match exactly without regard to 
city-state or firm information, and (3) if we link attorney 
names only when the first and last name match exactly 
without regard to middle name, city-state, or firm.  The 
results are shown below and are compared with the naïve 
Bayes matching.  As can be seen, the naïve Bayes 
technique significantly outperforms the baseline methods.  
For this comparison, we used a single match threshold of 
0.25.  High template and database record pairs scoring 
above the threshold were considered matched and those 
falling below were considered to signify an unmatchable 
template record.  
 
 Prec. Recall F 
Naïve bayes with 
threshold 0.25 

0.993 0.916 0.953 

Exact Match on first 
name, middle name, last 
name, and city-state 

0.994 0.422 0.592 

Exact Match on  first, 
middle and last name  

0.950 0.613 0.745 

Exact Match on first 
and last name only 

0.939 0.590 0.725 

 
Table 1: Attorney matching methods comparisons 

 

2.2 Case study: linking persons, companies, and 
locations from financial newswires to 
corresponding directory listings 
We have also tagged mentions of companies, locations, and 
persons in financial news text and resolved them to 
corresponding authority files.   Our biggest challenge in 
this application has been the resolution of persons.  Our 
authority file consists of 677,765 person records: the 
officers and directors of publicly traded companies. 
 
Our template record consists of the first, middle initial, last 
name, and companies named in the article.  We block using 
the first and last name of the record.  The blocks contain 4 
or less records 96% of the time; however, some contain 
over 80 records.  The matching phase is performed using a 
set of heuristics.  Rules for positive resolution are applied 
in order of greatest-to-least evidence and confidence.  
Measures of evidence and confidence include the degree to 
which a name mention in the text is an exact match with the 
authority file and whether or not the company name 
associated with a particular name record is also mentioned 
in the document text.  Names that are common with respect 
either to having many records associated with them, or in 
terms of a measure of overall name commonness (as 

determined by counts in a credit header database) are 
considered to be low-confidence and require more 
evidence for positive resolution.  
 
Our system achieves an F-measure of 92.2% on person 
resolution (91.7% precision, 92.7% recall).    This can be 
compared against a baseline of 50% accuracy.  This 
baseline is produced by randomly choosing a match from 
the block which average 2 records in size.  

3. Mapping records in one database to those 
in another database 

We consider one of the databases to be the target and then, 
as in the previous section, the task of matching records in a 
database with those in the target database consists of the 
two phases mentioned in the previous section: blocking 
and matching.   
 
Blocking can be explained in terms of extracting sets of 
candidate records from the target database that satisfy 
certain query parameters ― the goal of which is to select 
only those blocks of data that meet certain requirements for 
further processing (e.g., last name matches query AND zip 
code matches query). When a given blocking function does 
not yield any candidate match, a broader blocking function 
is tried.   Matching is done by scoring a feature vector of 
similarities over the various fields. The feature values can 
be either binary (verifying the equality of a particular field 
in the update and a master record) or continuous (some 
kind of normalized string edit distance between fields like 
street address, first name, etc).      
 
As in the previous section, the evaluation of such a 
matching task typically includes precision and recall  in an 
IR sense, as well as the associated F-measure.  We may also 
wish to measure our progress in terms of precision among 
the non-matches (how often is our “don’t match” decision 
correct)?  Speed in terms of resolutions-per-second is 
another metric that real-time production applications often 
monitor. 

3.1 Case study: the physician database 
The task consists of merging a physician record from an 
“update” database to the record of the same physician in a 
master record database. The update database has fields 
that are absent in the master record database and vice versa. 
The fields in common include the name (first, last and 
middle initial), several address fields, phone, specialty, and 
the year-of-graduation. 
 
More specifically, the system merges each of 20,000 
physician records to the record of the same physician in the 
master record database consisting of approximately 1 
million records. The fields in common include the name 
(first, last and middle initial), several address fields, phone, 
specialty, and the year-of-graduation. 
 
Although the last name and year of graduation are 
consistent when present, the address, specialty and phone 



fields have several inconsistencies owing to different ways 
of writing the address, new addresses, different terms for 
the same specialty, missing fields, etc. However, the name 
and year alone are insufficient for disambiguation. We had 
access to ~500 manually matched update records for 
training and evaluation (about 40 of these update records 
were labeled as unmatchable with the information 
available). 
 
We performed blocking by querying the master record 
database with the last name from the update record. 
Matching was done by scoring a feature vector of 
similarities over the various fields. The feature values were 
either binary (verifying the equality of a particular field in 
the update and a master record) or continuous (some kind 
of normalized string edit distance between fields like street 
address, first name etc.). 
 
The logistic-regression-based matching algorithm assigns 
to each feature vector the probability that it corresponds to 
a match. All the records in the block are ranked according 
to this probability and the highest scoring record is 
assigned as the match if its score exceeded some 
appropriate threshold.  
  
The training of the logistic regression algorithm was done 
by a semi-supervised algorithm called surrogate learning, 
which is based on the property that the binary year of 
graduation feature is independent of the other features if 
the two records are not matches. The reader is referred to 
(Veeramachaneni & Kondadadi, 2008) for a description of 
the algorithm and experimental results. 
 
The matching algorithm was evaluated on 500 manually 
matched records with n-fold cross-validation. From this 
assessment, the precision and recall of the algorithm were 
determined to be 96% and 95% respectively.  

4. Clustering records in a single database 
In some cases, a single database table contains many 
records for the same entity but there is no explicit link 
expressing the identity relationship.  The task then is to 
partition the table into equivalence classes where each 
class contains all the records for a specific entity.  Again 
the task breaks down into the subtasks of blocking and 
matching; however, a third task of clustering is also 
required.    We have successfully employed the similar 
blocking and matching techniques to those described in the 
previous sections.   For clustering, we have used 
agglomerative clustering but other methods could also be 
employed (Jain & Dubes, 1988). 
 
Evaluation, by contrast, does not follow the approach of the 
previous tasks.  Instead of statistics based on counts of 
record pair linkages correctly found, incorrectly proposed, 
missed, etc., the statistics are based on counts with in 
clusters and then averaged over clusters.  

 

4.1 Case study: account rolling 
Within one of our internal accounting systems, multiple 
database records may exist for a single customer. Each 
record corresponds to a separate license for a single 
product.  The customer database totals approximately 1.5 
million records. The record format allows for flexibility in 
identifying the customer: up to four text fields may be used 
to name the customer entity, contact entity, and secondary 
entities such as departments, offices, regions, etc. The 
database is populated by multiple systems and consistent 
text field usage is not enforced. To help facilitate the 
assignment of sales representatives, the application needs 
to resolve account clusters by customer, using textual 
information only (the four name fields and address fields).  
Customer types include corporations, state and federal 
governmental agencies, and educational institutions. 
Corporate names tended to vary over time, reflecting 
mergers.   Governmental customer names could also be 
non-unique: the same name may be utilized by similar 
entities in different cities, counties, states, and federal 
jurisdictions.   
 
The database did indicate the market segment, if known, of 
the record.  Therefore, clustering could be performed 
within each segment separately. Two thirds of the records 
had a non-null market segment.  Unknown records were to 
be matched against the resulting segment clusters and 
added if matched. 
 
The large corporations were expected to produce a 
relatively small number of large population clusters. A 
typical large corporation might have several hundred 
accounts. Approximately 50,000 accounts were expected 
to produce about 250 clusters.   Far more problematic were 
the state governmental accounts. These represent the 
largest number of records, over 350,000. Clusters were 
expected to be numerous and very sparsely populated.  
 
An SVM was used to compare record pairs. The feature 
data in each segment varied in completeness, location, and 
structure. In each of the segments, we wanted to match and 
cluster on the name of the entity. Feature selection involved 
selecting the optimum combination of the four text fields 
for each segment to determine the best cross match 
between records to keep expensive string comparisons to a 
minimum. The Jaro-Winkler algorithm was predominantly 
used in order to weight the first part of the string.   
 
The SVM was trained on user provided gold data pairs. We 
selected a ratio of positive to negative training pairs of 1/2 
(2000 and 4000 pairs respectively were used); 80% of the 
sampled pairs were used for training and the remaining 
20% used for model validation. We performed validation 
experiments to select the optimal combination of SVM 
parameters (C, gamma, and kernel). An RBF kernel was 
used. 
 
A basic agglomerative clustering technique was employed. 
The first record was set aside as the first cluster. The 



second record was compared to the first. If it matched (the 
SVM score exceeded a configurable threshold), it was 
added to the cluster. Otherwise a new cluster was created. 
Each subsequent record in the input data set was compared 
to existing clusters. When comparing a record to a cluster, 
the record was compared to each record in the cluster until 
either a match was found that exceeded the threshold or a 
negative match was found. If there were more than one 
matched cluster, the matched clusters were merged 
together. 
 
After all of the records had been processed, the single 
valued clusters (i.e. clusters with only one element) were 
extracted and re-run through the process using the 
multi-valued clusters as the starting point. This was 
repeated until the number of single valued clusters reached 
equilibrium. 
 
A final cluster merging was performed on the multi-valued 
clusters. The most frequently occurring entity name in each 
cluster was determined. For any two clusters, if the they 
had the same majority entity name and a similarity score 
(the product of the ratios of the number of occurrences of 
the majority entity name to the number of records in the 
cluster - a modified cosine similarity ) between the two 
exceeded a configurable threshold (usually .80), the two 
clusters were merged. 
 
Standard precision and recall metrics lacked a precise 
definition when applied to clustering. We initially devised 
two related metrics, purity and fragmentation to compare 
our cluster results with the gold data. Purity, a measure of 
how many records in the cluster belong together, measures 
the precision of the clusters at both the macro and micro 
level. Fragmentation attempted to quantify how many 
clusters it took to represent the true cluster. Purity is 
defined with respect to the generated clusters and 
fragmentation is defined with respect to the gold standard 
clusters.  A purity of 1 and a fragmentation of 0 would 
indicate a perfect cluster.  
 
The fragmentation scores were not informative enough. 
Similar fragmentation scores did not indicate how and to 
what extent the records were distributed across the set of 
clusters. A detailed tabular approach provided much better 
measurements: 
 
Let G be a gold data cluster: 
the set off all accounts, ai, that belong to a single customer. 
 
Let C be the set of all generated clusters that completely 
enclose G: 
 for all ai in G, ai is a member of a cluster in C  
 
Fragmentation of G equals the number of clusters in C - 1 
 
Let Cj be a generated cluster: 
 
Purity of Cj equals (size of largest gold standard 

contributor to the cluster) / (size of Cj) 
 
For any given sample, we determined the gold data clusters 
(record ids and count). For each gold data cluster, we found 
all generated clusters that contained an occurrence of a 
record id. For each of these clusters, we calculated the 
coverage ratio of id occupancies to the size of the cluster. 
For the three largest clusters, we reported the coverage 
ratios (this is a measure of how well any one of these 
clusters covers the target gold data cluster). We then 
accumulated average coverage scores for all clusters and 
macro coverage scores over the entire sample. We also 
reported the number of times a single cluster is generated 
that exactly covers the corresponding gold data cluster. 
 
For each of the three largest clusters reported on for each 
gold data cluster, we calculated the purity of the cluster by 
taking the ratio of correct matches to the size of the cluster, 
then accumulated both micro and macro averages. 
       
Let us now apply these metrics to our system’s output.   
When compared against the customer's existing method of 
clustering (a rule based system), we produced higher 
coverage scores for the largest generated cluster. We placed 
more records in a single large cluster while the existing 
method tended to distribute records over two or more large 
clusters. Both approaches had residual single records. 
Purity scores were consistently high (0.99 for large sized 
clusters) so the comparison and clustering techniques were 
valid. Nonetheless, fragmentation could not be reduced due 
to insufficient evidence in the remaining single valued 
clusters.   
 
Other comments on the output: 
 

• There were a large number of single records that 
could not be clustered. In most cases, a valid 
entity name was missing (not present in any of the 
four possible record fields) or only a contact name 
(a person) was entered. The appearance of just a 
person name caused over-rolling (records placed 
in the wrong cluster) because of similarity of the 
person names (filtering techniques removed most 
of these problems). 

 
• The entity names in governmental segments were 

not unique. The same name could indicate both a 
match and a mismatch. For example "Court 
Magistrate" was a match within the same circuit 
court, but a mismatch otherwise (this also resulted 
in positive and negative training vectors that were 
identical).     

 
• There were a large number of single records that 

could not be merged into their respective clusters. 
This results in large fragmentation (e.g. we could 
generate one large cluster that covered 90% of the 
records in a gold data cluster, but the remaining 
records resulted in single clusters that could not be 



merged). 
 

• Collections that are comprised of a relatively 
small number of large clusters are best suited to 
our techniques. Collections that consist of a very 
large number of very small or singular clusters did 
not perform as well. It looks like our techniques 
did quite well when the clusters were large 
enough to establish strong similarity 
measurements between records. For sparsely 
populated clusters, there wasn't enough evidence.  

 

5. Summary 
We have described a number of entity record tasks.  The 
first two tasks were (i) linking mentions of people and 
companies in legal text to structured authority files and (ii) 
linking mentions of entities in financial newswires to 
structured authority files.  The next task involved mapping 
records in one database to those in another: record 
matching for a physician database.  Finally, we described 
the task of clustering record accounts so that clusters 
contained all accounts for a single company. 
 
Although each of the entity record linking, mapping, and 
clustering problems described above are distinct, and invite 
their own innovative solutions, there also exists among 
them some common dimensions and broader lessons to be 
learned.   Some of these common dimensions include the 
following.  In an IR-like manner, there exists a clear 
trade-off between precision and recall.  One generally 
cannot make dramatic gains in one without witnessing 
degradation in the other.  It may only be the ratio of the 
benefit-to-cost that may change (e.g., a two point gain in 
recall costing five points in precision).   Just as significantly, 
precision and recall only tell part of the story, and tend to 
understate other challenges associated with the problem 
space, for instance, deciding that a candidate pair does not 
represent a solid match (i.e., avoiding false positives, a.k.a., 
non-match precision) can be just as challenging as deciding 
that a match is validated.  Other auxiliary metrics like 
average block size, in the case of linking or mapping, or 
maximum obtainable coverage or purity, in the case of 
clustering, can be equally informative indicators of 
problem difficulty or solution quality, and cannot be 
ignored when striving for globally optimal solutions.  Still 
other issues carry additional lessons relating to the scale of 
the problem, the diversity of the available data sources, and 
the dynamic nature of the underlying entity data.   Each of 
these dimensions compound the entity resolution challenge, 
and require real-world solutions in order to satisfy the 
underlying practical constraints.  Because our solutions are 
focused on industrial applications, results that surpass 
existing baselines but ignore these critical dimensions 
(scale, varying record quality, dynamic environments) are 
not acceptable.  Ultimately these approaches need to 
deliver high performance solutions in terms of result 
quality, scalability, and robustness, not to mention speed. 

6. References 
 
Baxter, R., Christen, P., and Churches, T. (2003). A 

Comparison of Fast Blocking Methods for Record 
Linkage. In Proceedings of ACM SIGKDD 2003 
Workshop on Data Cleaning, Record Linkage, and 
Object Consolidation. Washington, D.C., USA.  

Dozier, C. and Haschart, R. (2000). Automatic Extraction 
and Linking of Person Names in Legal Text. In 
Proceedings of RIAO 2000 (Recherche d’Information 
Assistee par Ordinateur). Paris, France: pp. 1305--1321.  

Jain, A.K. and Dubes, R.C. (1988). Algorithms for 
Clustering Data. Prentice-Hall, Englewood Cliffs, NJ.  

Veeramachaneni, S. and Kondadadi, R.K. (2008). 
Surrogate Learning—From Feature Independence to 
Semi-supervised Classification. Submitted to ICML 
2008.  

Winkler, W. (1995). Matching and Record Linkage. In Cox, 
B. G., ed., Business Survey Methods, Wiley.  

 
 
 
 
 


