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ABSTRACT
Transformer architectures such as BERT, XLNet, and others are
frequently used in the field of natural language processing. Trans-
formers have achieved state-of-the-art performance in tasks such as
text classification, passage summarization, machine translation, and
question answering. Efficient hosting of transformer models, how-
ever, is a difficult task because of their large size and high latency.
In this work, we describe how we deploy a RoBERTa Base ques-
tion answer classification model in a production environment. We
also compare the answer retrieval performance of a RoBERTa Base
classifier against a traditional machine learning model in the legal
domain by measuring the performance difference between a trained
linear SVM on the publicly available PRIVACYQA dataset. We show
that RoBERTa achieves a 31% improvement in F1-score and a 41.4%
improvement in Mean Reciprocal Rank over the traditional SVM.
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1 INTRODUCTION
Historically, when legal professionals performed natural language
search, they would be required to sift through exhaustive lists of
results, ranked by probability of relevance, in order to identify
materials relevant to their search [18]. The task could be a time
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consuming and laborious effort. Over time, we began to see an in-
terest in more focused question answering systems taking the place
of traditional information retrieval systems. In the field of AI and
Law, Quaresma and Rodrigues were among the first to implement
a question answering system for legal documents [13], one that
focused on Portuguese legal decisions. More recently, however, de-
velopments in deep learning-based approaches for tasks like open
domain question answering have resulted in major gains in answer
rate performance. They have also been responsible for comparable
advances in closed domain question answering in fields such as
Legal QA [1]. Such progress has resulted in performance gains for
both factoid and non-factoid question answering.

Transformer architectures have delivered impressive perfor-
mance gains over baselines for standard natural language process-
ing (NLP) tasks. Open domain language modeling as a pretraining
step, followed by domain specific fine-tuning on another domain
has delivered state-of-the-art performance for tasks in a specific
domain, including the legal domain. One should thus expect to see
significant performance gains in legal question answer retrieval
by utilizing the output of a transformer based classifier which has
been fine-tuned on legal QA pairs.

It has been well observed that transformers are highly perfor-
mant at answering factoid questions which typically have answers
with one or a few words [5]. Transformer based research in the
Legal domain has evolved toward more complex non-factoid ques-
tions which are more nuanced and may require several sentences to
provide context and elaboration in order to answer the legal ques-
tion at hand, for example, "When is a party entitled to a protective
order?" The current work extends this research by processing a
publicly available non-factoid QA dataset in an application work-
stream, while addressing the challenges of performance quality,
speed and scale.

2 PRIORWORK
The primary approaches employed to improve question answering
search results fall into three categories: document-centric, query-
centric, and ranking-centric (e.g., neural approaches). The works
described below generally fall into one or more of these categories.

2.1 Open-Domain Question Answering
Open domain question answering is a task that answers factoid
questions using large collections of documents [19]. Historically,
retrieval in open domain QA was usually conducted using tf.idf
or BM25 approaches, which match keywords with an inverted in-
dex, and represent the question and content in high-dimensional,
sparse vectors [16]. In their 2017 report, Chen, et al. propose us-
ing Wikipedia for open domain question answering for factoid
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questions [5]. The task is one of machine reading at scale, which
addresses the challenges of document retrieval and machine com-
prehension (identifying text spans containing the answer). Their
approach combines a search component based on bigram hashing
and tf.idf matching with a multi-layer recurrent neural network
model trained to detect answers in Wikipedia paragraphs. They use
the SQuAD dataset for training and three other datasets for testing
[14]. They obtain an F-score of 79%, which was within a point of
the top performing method at the time.

In their work on dense passage retrieval for open domain ques-
tion answering, Karpukhin, et al., show that retrieval can be ef-
fectively implemented using dense representations alone, where
embeddings are learned from a small number of questions and
passages via a simple dual encoder framework [9]. It has outper-
formed traditional QA baselines (top-20 results) by 9%-19%, while
establishing new end-to-end baseline performance levels.

In their earlier work on Bidirectional Encoder Representations
from Transformers (BERT), Devlin, et al. introduced a new language
representation model which is designed to pre-train deep bidirec-
tional representations from unlabeled text by jointly conditioning
on both left and right context in all layers [7]. BERT consequently
can be fine-tuned with just one additional output layer to create
state-of-the-art, highly performant models for a wide range of tasks,
including question answering.

As an extension to BERT, Liu, et al. developed a "robustly op-
timized" pretraining approach to BERT known as RoBERTa [10].
They found that BERT was significantly undertrained. In their repli-
cation study of BERT, they carefully measured the impact of many
key hyperparameters and training data size. They showed how
hyperparameter choices have a major impact on final results. Their
best model achieved state of the art results against such standard
collections as GLUE, RACE, and SQuAD.

Because pre-trained language models are usually computation-
ally expensive, and it is difficult to execute them on resource limited
devices, researchers like Jiao, et al. have focused on transformer
model distillation methods and proposed a novel method that was
specially designed for knowledge distillation (KD). By leveraging
their new KD method, while focusing on the knowledge already
preserved in larger models like RoBERTa, they discovered that such
knowledge could be transferred to a smaller TinyBert model [8].
The new framework captured in TinyBert performs transformer
distillation at both the pre-training and task specific learning stages.
They have shown that their framework ensures that TinyBert cap-
tures the general knowledge and task specific knowledge preserved
in BERT.

In contrast with factoid question answering, Zhu, et al. pur-
sued non-factoid question answering where the answers tend to
be longer passages [22]. In this work, the authors determine that
by generating synthetic training data of arbitrary volume and with
well understood properties, the learning capacity of Knowledge
Graph architectures can be better understood and characterized.
Whether a given neural architecture for KGQA will train a model to
generalize rather than memorize may depend on dataset properties.

2.2 Legal Domain Question Answering
In a recent work, the authors address a due diligence topic where
lawyers review documents for indication of risk due to the prospect

of a merger or acquisition [6]. They claim that what is novel in
their approach is that the proposed system explicitly handles the
imbalance in the data, by generating synthetic instances of the
minority answer categories, using the Synthetic Minority Oversam-
pling Technique [4]. This ensures that the number of instances in
all the classes are roughly equal to each other, thus leading to more
accurate and reliable classification. They use conditional random
fields as their text selection algorithm. Each sentence in the contract
under consideration is featurized into a tf.idf vector and fed into the
CRF algorithm. The authors found a 13% improvement in accuracy
due to the imbalance handling.

The recently published work on Legal BERT has reported on
performance gains on an assortment of downstream NLP tasks
[3]. The authors compare the performance of out of the box BERT
with a version that benefits from additional pre-training with legal
domain data, and finally with a version where the pre-training with
legal domain data starts from scratch. The legal domain training
data consists of UK and EU legislation, European Court of Justice
and Court of Human Rights cases, and finally U.S. court cases as
well as U.S. contracts. The authors show that the best strategy
to transfer BERT to a new domain may vary, but that one may
consider either further pre-training or pre-training from scratch
on data from the new domain. Legal BERT achieved state-of-art
results in three end-tasks, and, most notably, the performance gains
were stronger for the most challenging end-tasks (i.e., multi-label
classification in ECHR-cases and contract header & lease details
in Contracts-NER) where in-domain (legal) knowledge is arguably
the most important. The authors also released a version of Legal
BERT-SMALL, which is 3 times smaller than Legal BERT, but quite
competitive performance-wise to the other versions of Legal BERT.

Reports on question answering systems have also recently been
published by researchers at Thomson Reuters and LexisNexis [2,
11]. The current work demonstrates the robustness of a Legal QA
system deployed in a multi-stage workstream where the engine is
fine-tuned on an application-specific dataset. The application and
dataset are discussed below. The system is shown to significantly
outperform the baseline using contemporary neural techniques.

3 METHODOLOGY
Transformer models have achieved state-of-the-art performance
in many NLP applications such as text classification, text summa-
rization, question answering, etc. Though transformers are highly
performant, their generally large size make them difficult to deploy
in production systems. Successful transformer model hosting in
a production environment would be a major advance in natural
language applications. For this reason, we developed a high perfor-
mance question answering (QA) system based on the RoBERTa base
architecture, but other transformer architectures could be used as
well [10, 12]. The challenges and our strategies for handling these
problems will be discussed later in this section.

QA system researchers do not frequently have access to evalu-
ated QA pairs that are broad, balanced, and comparable to what a
user would ask. Open sourced QA pairs tend to be either very gen-
eral or belong to a niche domain. If one is fortunate to have access to
labeled QA pairs in the working domain, it is unlikely that there is
enough data for broad topic coverage. To address this issue, subject
matter experts (SMEs) can be hired to procure quality QA pairs. Yet
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Figure 1: QA System Development Cycle

SMEs often experience fatigue when producing examples, even if
the queries are from user query logs. This phenomenon often man-
ifests itself in the form of weak question-answer pair generation
where examples differ by only a few words. To address such limi-
tations, natural language user queries are identified, run through
the classifier, and the highest scoring QA pairs are evaluated. The
resulting data can then be used to train the model, resulting in a
cyclic data curation, model training process as seen in Figure 1.

Given the QA system that we developed was intended for ap-
plication to sets of in-house legal documents, many of which are
not freely available to the general public, for the purposes of this
research report, we have opted to apply our techniques to the pub-
licly available legal questioning collection described in section 3.2.
Though it covers a subdomain of the legal space, it is nonetheless a
broad ranging and complex dataset that contains an array of top-
ics, question and answer lengths and types. It is a nuanced and
challenging set of data which is indicative of the kinds of question
and answer types one can expect to see in the legal domain. The
findings we obtain apply specifically to the PRIVACYQA dataset,
but are also representative of the kinds of issues and challenges
one encounters with wider-ranging legal datasets as well.

3.1 Training Targets
In order to assess the performance of the QA classifier, natural
language user log queries and their retrieved answers are presented
to an SME. The SME then must determine whether or not the top
answers returned by the classifier satisfy what was being asked.
The grade by the SME can be a binary "pass/fail", a letter grade,
or even a score on a continuous scale. In our case, the grade is
converted into a label or regression target to be used for model
fine-tuning.

For our internal QA classifier, we utilized a multi-label grading
criteria which determined whether or not the answer satisfies the
requirements and to what degree it answers the given question. In
order to avoid grader bias, we have two SMEs grade each QA pair,
and the average is taken. Disagreements of more than one grade
may be adjudicated by a senior SME. A similar approach was used
by the creators of the PRIVACYQA dataset, which will be explained
later in this section.

3.2 Data
The dataset used in these experiments comes from the PRIVACYQA
dataset described by Ravichander, et al. in [15]. It is a corpus con-
sisting of 1,750 questions about privacy policies associated with
mobile applications [20], and more than 3,500 relevant answers that

have been annotated by experts. From the data provided, we have
obtained approximately 130K passages for our training set, of which
about 25% was used in our validation set. The goal of the collection
was to achieve broad coverage across a spectrum of application
types. The researchers collected privacy policies from 35 mobile
applications representing different categories in the Google Play
Store [17]. Another goal of the creators was to include both policies
from well-known applications, which are likely to have carefully-
constructed privacy policies, and lesser-known applications with
smaller install bases, whose policies might be considerably less
sophisticated. They set a threshold of 5 million installs to ensure
each category includes applications with installs on both sides of
the threshold. All policies in the corpus are in English, and were
collected before April 1, 2018, predating many companies’ GDPR-
focused revisions.

3.2.1 Answer Identification. In order to identify legally valid an-
swers, seven subject matter experts with legal training were re-
cruited to formulate answers to the Amazon Mechanical Turk ques-
tions. They indicated relevant material within the given privacy
policy in addition to supplying relevant metadata regarding the
question’s relevance, subjectivity, OPP-115 category [21], and how
likely any policy is to containing the answer to the question.

Table 1 presents aggregate statistics for the PRIVACYQA dataset.
1750 questions are posed to an imaginary privacy assistant over 35
mobile applications and their associated privacy documents.

Dataset Train Test All
No. of Questions 1350 400 1750
No of Policies 27 8 35
No. of Sentences 3704 1243 4947
Avg. Q Length 8.42 8.56 8.46
Avg. Doc. Length 3121.3 3629.13 3237.37
Avg. Ans. Length 123.73 153.44 139.62

Table 1: Statistics of the PRIVACYQA Dataset

4 EXPERIMENTS
To demonstrate the quality of answer retrieval performance of a
transformer in comparison with traditional ML models, we fine-
tune an open domain pretrained RoBERTa classifier and train a
linear SVMwith tf.idf features on the PRIVACYQA dataset. Training
models on this dataset is challenging for several reasons. First, the
dataset is largely unbalanced with negative examples occurring
25 times more often than positive examples. In addition to this,
there exists considerable noise in both the queries and the answers.
Finally, the number of unique questions and answers are far fewer
than the total counts of QA pairs in the dataset.

Class imbalance is a common problem in real world machine
learning applications. For this reason, there are many methods to
effectively combat the adverse effects of training on an imbalanced
dataset. These can include over/under sampling, class weighting
on the loss, external or generated training data augmentation, and
more. For our experiments, we apply a simple class weighting
scheme to give more weight to the underrepresented positive class.

The PRIVACYQA data is quite noisy. The queries and answers are
riddled with misspellings, URLs, improper grammar, fragmented
sentences, lack of punctuation, and more. In order to have the
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data resemble the data existing in our internal system, significant
data cleaning and filtering is applied. This includes capitalizing
sentence beginnings, removing URLs, removing queries or answers
with more than 4 non-english words, and additional cleaning and
filtering steps. Even after all of this data preprocessing, the data
remains far from perfect, but is sufficient to meet the requirements
of our experimental conditions.

The original PRIVACYQA paper split the training and testing
datasets by privacy category, rather than by unique queries. There-
fore, original PRIVACYQA dataset contains data leakage. Several
queries from the test set can also be found in the train set. In order
to rectify this, we identify the queries which exist in the training
set, and reassign those QA pairs as training data, which can be seen
in Table 2.

Set Positives Negatives Total
Train 6,950 152,903 159,487
Test 5,276 45,493 50,720

Table 2: Dataset Split Statistics

We perform tf.idf fitting on the unigrams and bigrams from
the corpus of unique answers, and use it to vectorize the QA pairs
which are then used as inputs to a linear SVM. The hyperparameters
of the SVM are found by performing 5-fold cross validation via
grid searching with maximizing the validation set F1-score as the
objective. This process leads to optimal hyperparameters for the
SVM model and a consistent training-validation split to be used for
training RoBERTa.

Due to the large number of parameters in RoBERTa, it is trained
by gradually unfreezing the layers, starting with the classification
head. The learning rate and the batch size are decreased as layers
are unfrozen, as to avoid overloading the CUDA memory. After
each epoch, the validation F1-score is measured until a plateau is
reached, at which point the model loses generalizability.

5 RESULTS
After training both RoBERTa and SVM classifiers, the models are
run over the test set to determine the performance gain of using
a transformer based QA classification engine. The results can be
seen in Table 3.

Metric SVM RoBERTa
Precision 0.212 0.470
Recall 0.480 0.326
F1-score 0.294 0.385*
MRR 0.074 0.105**
Table 3: Classifier Performance on the Test Set

As seen in the table, RoBERTa outperforms the SVM for all
metrics, except for recall. This makes sense because the SVM looks
for exact token matches between the query and answer to assign a
positive label. RoBERTa, however, uses the latent representation of
the tokens to identify potential answers. In any QA application, it
is important to serve an expansive set of quality answers, for this
reason, RoBERTa is preferable to the SVM for its 31% improvement
in F1-score over the SVM (* p < 1 × 10−5).

One of the most important metric for QA classification systems is
the Mean Reciprocal Rank (MRR). This simple metric is the average

inverse position of the true labeled examples in the answer pool.
MRR is a useful metric for ensuring that the highest quality answers
make it to the highest rank in the list. This is especially important
for applications like question answering which may return a few
or even one answer for a particular query. Due to the importance
of MRR, RoBERTa is the better choice for a QA model with a 41.4%
improvement in MRR over the SVM baseline (** p < 1 × 10−5).

It is interesting to see that a simple, traditional ML model op-
erating on sparse word vectors achieves performance relatively
similar to that of a transformer. One explanation of this could be
due to the fact that the data is very messy and lacks uniqueness. A
simple ML model doesn’t get distracted by nuances of this dataset
such as: fragmented sentences, misspellings, and the frequent use
of URLs and company names. A simple ML model is also less prone
to overfitting than a transformer, especially considering the re-
dundancy of the text in the dataset. Overfitting was a challenge
during experimentation. For this reason, one can expect even higher
RoBERTa performance if the experiments are repeated with a more
sophisticated strategy for combatting overfitting. A major lesson
learned from running this experiment is to ensure that the data
used for training a transformer QA classifier is clean and without
redundancy. In addition to this, more careful domain adaptation
could be applied before fine-tuning on the experimental dataset.

6 APPLICATION PIPELINE
Developing a strong QA classifier is only one piece of deploying
a scalable QA application. It is not feasible to simply concatenate
all passages from a corpus to a user’s query and sequentially feed
them to a classifier. Instead, there needs to be a way to quickly filter
out obvious negative passages, yielding a smaller pool of potential
answers to be fed to the classifier. An additional challenge of using a
transformer based classifier like RoBERTa is its size and latency. In
order to address these challenges, we propose a solution consisting
of a parallel cluster for candidate retrieval (Stage 1) and RoBERTa
operating on a GPU endpoint (Stage 2). In addition, in order not to
overwhelm the user of the application, we typically return the top
n answers as predicted by RoBERTa, where n is small.

One of the most important requirements for a powerful QA clas-
sification engine is to have a sufficiently large corpus of passages
against which a query can be compared. Oftentimes, this can be
on the scale of hundreds of thousands to millions of passages. The
overwhelmingly vast number of passages is irrelevant to a particu-
lar query, and these are not difficult to identify. For this reason, it
is a good idea to have a computationally efficient method of remov-
ing the obviously irrelevant passages before performing any QA
inferencing. In addition, due to the scale of the data, it is imperative
to perform this filtering in parallel. To accomplish this, we employ
a parallel data cluster in the cloud with our data spanning several
nodes (See Figure 2). The cluster functions by serving up the top-n
most relevant passages as determined by properties such as term
overlap between the query and passages. It is up to the application
designer to determine the appropriate number of passages to in-
clude in a candidate pool. Most often, a candidate pool size between
100 and 1000 suffices. Increasing the number of nodes decreases
latency but increases cost, so application engineers must decide in
advance on how many nodes to include in their cluster.
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Figure 2: QA Application Pipeline

After a more narrow candidate pool has been retrieved, the QA
pairs are then tokenized, pushed to the CUDA device, and fed to
the classifier. The classifier returns a list of prediction scores of the
relevance of the passage to the answer. The passages associated
with these predictions are then sorted, and the top-n are returned,
where n is determined by the application development team. One
may wish to apply a RoBERTa score threshold, so that very low
predictions, which are very often negative, are not shown to the
user. If executed properly on the appropriate hardware, the entire
answer serving process can take a second or less to perform.

7 CONCLUSIONS
Question answering is a challenging task which has been in devel-
opment for many years. Question answering can take on different
forms such as answer generation, answer snippet retrieval, and
question answer classification. We propose an end-to-end pipeline
which combines the speed of a parallel data retrieval mechanism
with the classification power of a fine-tuned RoBERTa Base classi-
fier. Our observations from our internal data and the data discussed
in this paper indicate that transformer architectures can achieve
greater classification performance than traditional machine learn-
ing methods in legal QA classification tasks.

We have discussed the efficacy of transformer models in text clas-
sification tasks. We observe a significant increase in F1-score and
MRR of a RoBERTa classifier over a linear SVM on the PRIVACYQA
dataset. Our experiment has shown that transformer models can
achieve superior performance over traditional machine learning
techniques in legal question answer classification.

We have also also discussed some of the challenges and solu-
tions associated with developing and operating a transformer based
question answer classification system. With a large set of content,
subject matter experts, and sufficient computing power, it is pos-
sible to train and operate a transformer based system in a cost
effective manner.
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